
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

01
5

85
5

B
1

TEPZZ Z_5855B_T
(11) EP 2 015 855 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
05.10.2016 Bulletin 2016/40

(21) Application number: 06752409.0

(22) Date of filing: 05.05.2006

(51) Int Cl.:
A63H 5/00 (2006.01) G04B 13/00 (2006.01)

G10H 7/00 (2006.01)

(86) International application number:
PCT/US2006/017757

(87) International publication number:
WO 2007/130056 (15.11.2007 Gazette 2007/46)

(54) SYSTEM AND METHOD FOR DYNAMIC NOTE ASSIGNMENT FOR MUSICAL SYNTHESIZERS

SYSTEM UND VERFAHREN ZUR DYNAMISCHEN NOTENZUORDNUNG FÜR
MUSIK-SYNTHESIZER

SYSTÉME ET PROCÉDÉ D’ATTRIBUTION DE NOTE DYNAMIQUE POUR DES SYNTHÉTISEURS
MUSICAUX

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI
SK TR

(43) Date of publication of application:
21.01.2009 Bulletin 2009/04

(73) Proprietor: The Stone Family Trust Of 1992
Hidden Hills, California 91302-2416 (US)

(72) Inventors:
• STONE, Christopher, L.

Hidden Hills, CA 91302-2416 (US)

• DAVIS, Gary, D.
West Hills, CA 91307-1534 (US)

(74) Representative: Puschmann Borchert Bardehle
Patentanwälte Partnerschaft mbB
Postfach 10 12 31
80086 München (DE)

(56) References cited:
EP-A2- 0 743 631 US-A- 4 984 497
US-A- 5 703 312 US-A- 5 959 232
US-A- 5 998 724 US-A1- 2004 159 219
US-A1- 2004 267 541 US-A1- 2005 076 770

EP 2 015 855 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

TECHNICAL FIELD

[0001] This invention relates to the playing or orches-
tration of musical material on a sample-based or synthe-
sizer-based instrument in a way that dynamically assigns
individual note reproduction to simulate the manner in
which a given number of live musical instruments would
play a musical selection. The same note assignment
methods described here may equally be applied to the
generation of musical scores for orchestration, or for gen-
erating stored note-playing data for subsequent genera-
tion of synthesized sound or orchestration.

BACKGROUND

[0002] There are fundamentally two categories of mu-
sical synthesizers: (a) samplers (or "sampling synthesiz-
ers"), in which stored digitized recordings (or samples)
of actual instruments are reproduced when notes are
played on a keyboard connected to the sampler, and (b)
synthesizers, in which sounds are created at the time
they are played based on analog or digital electronic cir-
cuitry which creates the sound without reliance upon pre-
viously recorded actual instruments. These instruments
today are predominantly polyphonic, meaning they can
play more than one note at a time. While the nature of
the invention is immediately more applicable to samplers,
it will function in connection with synthesizers as well.
For simplicity the discussion herein will focus primarily
on sampling applications:
[0003] Current electronic musical instruments are pre-
dominantly sample-players, which means they play spe-
cially processed digital recordings of sounds in response
to some sort of control input, typically a musical keyboard
or a sequencer. In simple terms a sequencer is like a
digital version of a player piano giving instructions to the
sample player (or other electronic instrument) on which
notes to play and how to play them. For the purpose of
the instant invention, it doesn’t matter whether a "real
time" keyboard or other musical controller or a sequencer
is used to play notes on the synthesizer. There are syn-
thesizers in which waveforms are generated and/or ma-
nipulated to create sounds without any reference to ac-
tual recorded sounds (such as additive waveform syn-
thesizers, fm-modulating synthesizers, and wave table
lookup synthesizers, among others); these were the orig-
inal types of synthesizers. Later, as digital audio technol-
ogy developed and became affordable, samplers or sam-
pling synthesizers became popular; for samplers, actual
recordings of sounds are specially processed into files
that are stored on digital media for later playback that
emulates the original recorded acoustic instruments (or
other sound sources).
[0004] Sampled sounds are sold in collections, or li-
braries, and the individual sounds in sample libraries may
be created from recordings of one or several instruments.

With ensemble instruments such as bands and orches-
tras, it is common for a group of similar instruments to
be recorded together; this "multi-instrument" sound is
saved as a single sample. Thus, a prior-art sample of the
first violin section of a symphony orchestra may consist
of a recording of sixteen violins playing the same note,
and these same sixteen violins would then play another
note, and the collection of such notes would be packaged
and identified, for example, as the "XYZ first violin sample
library."
[0005] Depending upon the nature of the technology
used in a prior art sampler, there may be a separate
source recording (initial sample) in its library for each
note the sampler is capable of reproducing, or a single
note sample may be electronically interpolated to higher
and lower pitches corresponding to various notes. The
first option yields optimum sound quality, at maximum
cost and complexity, to create the library and reproduce
it in the sampler, whereas the second option yields lesser
sound quality at a reduced cost and complexity.
[0006] When samples are initially recorded, there may
be one or many instruments actually playing the sound
(and each may be playing one or more notes). Typically
with orchestral or large band sounds, entire sections of
instruments play each sampled note, with all instruments
in a given section concurrently playing a single note.
Thus, in the prior art a sample of an orchestra section of
eight cellos would be a single recording of eight cello
players playing the same note. When this sample of one
note is played back on a sampler, all eight instruments
are heard playing the same note. Similarly, a sample of
an orchestra section of sixteen violins would be made by
recording sixteen individual violin players all concurrently
playing the same note, and when this sample is played
back the sound of all sixteen violins would be heard play-
ing that note concurrently.
[0007] When prior art samples of sixteen violins are
played back in a sampler, if the person playing presses
one key on the keyboard (or otherwise causes one note
to be played), the sound that comes out of the sampler
is the sound of all sixteen violins playing that note. So
far, this may be very close to what would be heard in an
actual symphony hall where, if the conductor (or musical
score) instructs the first violins to play that same note, all
sixteen will play that note.
[0008] However, if the person playing the sampler with
this prior art violin sample presses two notes on the key-
board (or otherwise causes two notes to be played), the
sound that comes out of the sampler is the sound of all
sixteen violins playing each of the two notes; i.e., one
hears 32 violins playing; this is what is called "additive
polyphony." Additive polyphony is not what would be
heard with an actual symphony because in that case (with
our example) there are only 16 violinists present, not 32.
In fact, when a conductor (or musical score) instructs
such a first violin section to play two notes, half of the
players (eight of them) will play the one note and the
other half (the remaining eight) will play the second note.

1 2

EP 2 015 855 B1

3

5

10

15

20

25

30

35

40

45

50

55

[0009] If there are three notes to be played at once,
the available players are split up into three groups, each
group playing one of those notes. With sixteen players
and three notes, obviously the division is not equal, so it
would typically be done with one note assigned to 6 play-
ers, and each remaining note assigned to 5 players each.
This is what is called "subtractive polyphony."
[0010] When the number of players available cannot
be evenly distributed among the number of notes being
played, a choice must be made as to where the "extra"
player or players are assigned. This choice can be con-
sidered to be top weighted if the extra player(s) play the
highest note(s) or bottom weighted if the extra player(s)
play the lowest notes(s). With live acoustic performers,
the allocation decisions affecting which notes are given
to available players is done through a process known as
"divisi," and the instructions for such divisi are created
by any of several parties involved with the music creation.
Any combination of the composer, a musical arranger,
the conductor and the "first chair" player of the particular
section of instruments typically decide who plays which
notes; divisi is not an exact science or protocol in music,
but it is a well-established and essential principle guiding
live performances wherein more than one player of a
particular type of instrument are playing at once.
[0011] As noted above, the prior art, when multiple
notes are concurrently played on a sampler, multiple in-
stances of the sampled recording are sounded. Thus, if
one has a cello sample in the library made from eight
cellos, and two notes are played together on the sampler,
the sampler would play the sound of sixteen cellos play-
ing, eight instruments per note. If one plays a triad (i.e.,
three notes concurrently) on the sampler, the sampler
would play the sound of twenty-four cellos (i.e., three
times the eight cellos per sample). Although this is what
is available in professional studios, it results in an unre-
alistic sound quality which does not reflect how an actual
orchestra would sound. By way of example, with a real
orchestra, the power (or volume) of a cello section stays
relatively constant whether the cello players play one or
several notes simultaneously (e.g., the power is about
the same whether eight cellists of an eight cello orchestra
section all play the same note or if five are playing one
note while three are playing a different note). With a prior
art sampler, the power is multiplied approximately by the
number of notes played. By way of another example, as
more and more notes are played simultaneously with a
sampler, the density of the harmonics sounded tends to
create an organ-like effect rather than preserve the clarity
and concise sound definition afforded by a reasonable
and fixed number of instruments playing at once. (Note
that there may be valid reasons to use additive polyph-
ony, but optimum orchestral sound is not obtained using
additive polyphony exclusively.)
[0012] The method by which prior art samples are im-
plemented does not include any provision for automatic
allocation of individual notes among a fixed number of
players. Most conventional sample libraries have multi-

ple players "built in" to a given sound sample and so the
"additive polyphony" employed in typical samplers cause
more instruments to be heard the more notes that are
played at the same time. This causes the sound power
to multiply with each note played (three notes played us-
ing a sixteen-violin sample will sound like the first violin
section has suddenly grown to 48 players). For this rea-
son, anyone who has tried to attain realistic or even us-
able "orchestral balances" using prior art samplers and
sample libraries has had to constantly "ride gain" or adjust
the volume level of the performance to compensate for
the power build up with greater numbers of notes; such
"gain riding" may alternately be done by skilful playing
on a velocity-sensitive keyboard, but this can be an ex-
hausting effort. In a "real" orchestra or other ensemble,
such sound power (volume) build-up does not occur be-
cause no matter how many notes are played, there are
only a fixed number of musicians and instruments on
stage performing.
[0013] The realism of sampled sound also depends
upon correct conveyance of the harmonic structure. Each
instrument as played by a given musician produces its
own unique timbre (harmonic structure) and these vari-
ous harmonics together create the texture of the sound
that is heard. With a fixed number of instruments con-
stantly reallocated to whatever number of notes are being
played (the "live" situation), these unique timbres are all
present, but only one per instrument, and so the com-
bined harmonic structure has a distinct and discernable
quality to a trained ear. However, when this full set of
instruments also play the next note and the next and so
forth all at one time (the prior art sampler situation), the
harmonic structures of these multiple sets of instruments
playing various notes overlay one another, and the
unique timbres are no longer discernable. The resulting
sound may be described as "dense," "organ- like," or
"muddy," and no amount of volume control adjustment
can remedy this unrealistic harmonic structure.
[0014] US 2005/0076770 discloses a method and sys-
tem for assigning notes to be played by a musical syn-
thesizer to a predetermined number of channels of said
musical synthesizer, so that the musical synthesizer may
emulate the note allocation of a live orchestra section.
The method includes the steps of selecting a note/chan-
nel assignment table corresponding to the number of
notes to be played and the number of channels allocated
to the playing of such notes, and assigning notes to the
channels pursuant to the assignment table. The number
of channels would typically be the same as the number
of instruments in the orchestra section being emulated
As new note events occur, notes are dynamically reas-
signed to channels so that hard and soft attacks are taken
into account and, to the extent practicable, each channel
plays a single note at a time.
[0015] What is needed to improve the realism of sam-
pled or synthesized musical performances is a way to
allocate the notes played to individual instruments or to
small groups of instruments, changing the allocations in

3 4

EP 2 015 855 B1

4

5

10

15

20

25

30

35

40

45

50

55

accordance with the number of notes being sounded at
any given time. That is the nature of the methods pre-
sented herein.
[0016] For this purpose, a note assignment processor
according to the invention comprises the features of the
independent claim. Preferred embodiments of the inven-
tion are characterized in the sub-claims.
[0017] Various embodiments of the invention relate to
methods and systems for assigning notes to be played
by a musical synthesizer to a predetermined number of
channels of said musical synthesizer, so that the musical
synthesizer may emulate the note allocation of a live or-
chestra section.
[0018] For this purpose, a note assignment processor
according to the invention comprises the features of claim
1. Preferred embodiments of the invention are charac-
terized in the sub-claims.
[0019] Various embodiments of the invention relate to
methods and systems for assigning notes to be played
by a musical synthesizer to a predetermined number of
channels of said musical synthesizer, so that the musical
synthesizer may emulate the note allocation of a live or-
chestra section. The method includes the steps of se-
lecting a note/channel assignment table corresponding
to the number of notes to be played and the number of
channels allocated to the playing of such notes, and as-
signing notes to the channels pursuant to the assignment
table. The number of channels would typically be the
same as the number of instruments in the orchestra sec-
tion being emulated As new note events occur, notes are
dynamically reassigned to channels so that hard and soft
attacks are taken into account and, to the extent practi-
cable, each channel plays a single note at a time.
[0020] Various embodiments of the invention also re-
late to methods and systems for assigning notes to be
played by a musical synthesizer to a predetermined
number of voices (where a "voice" nominally represents
one or several instruments) of the musical synthesizer,
so that the musical synthesizer may emulate the note
allocation among musicians of a section within a live or-
chestra. The method, which the authors refer to as "sub-
tractive divisi," includes the steps of pre-assigning voices
(whether single or multiple instruments) to different chan-
nels so they can be addressed discretely (this presup-
poses the voices have been created as individual instru-
ments or small clusters of them, rather than whole sec-
tions of instruments as was common in prior art libraries
of sounds), pre-assigning other parameters as well (such
as priority, top or bottom weighting), calculating in real
time the assignment of notes to each of the available
voices, and reassignment of voices whenever the spe-
cific notes playing change. The number of channels
would typically be the same as the number of instruments
(or, for example, small groups of instruments, depending
on the resolution of the sampled voices) in the orchestra
section or other ensemble being emulated. Note events
are defined per current industry practice, and the signif-
icant events for this process are note-on’s (an added note

is played) and note-off’s (a note is no longer played). As
new note events occur, notes are dynamically reassigned
to channels so that as a basic function, each channel
plays a single note at a time. Additional provisions of the
invention deal with situations when more notes are
played than there are available voices (which is referred
to herein as "overflow"), and how to reallocate a channel
(or channels) that had been sounding a given note which
is subsequently released while other notes of a chord
continue to sound.
[0021] The various embodiment for subtractive divisi
provide dynamic note allocation and being accomplished
by means of lookup tables or algorithmic methods, for
example. Various embodiments also provide methods
for handling overflowed notes (notes exceeding in quan-
tity the number of voices available) which method pre-
serves a better orchestral balance. The basic subtractive
divisi functions are embodied in several exemplary proc-
esses herein, including variations for top and bottom
weighting and for note overflow. Also presented herein
are an alternative set of processes for what the authors
refer to as "additive divisi" which in a novel way can per-
form real time orchestration among multiple instrument
sections. Additive divisi serves more of an orchestrator
function than it does an orchestral balancing function;
however, it is a procedure for dividing or assigning notes
and it may invoke subtractive divisi in an overflow situa-
tion so we retain the term "divisi" in this context as well.
Additive Divisi provides an ordering procedure for se-
quentially joining instruments into a composition, which
order is determined by means of assigning "additive pri-
ority" values to the available instrument sections (desig-
nated by means of additive divisi paths). Additive Divisi
with Overflow provides the means for distributing notes
when the number of notes exceeds the number of addi-
tive priority settings one has established for the additive
divisi paths.

BRIEF DESCRIPTIONS OF THE DRAWINGS

[0022]

FIG. 1 is a schematic drawing of an embodiment of
the present invention.
FIGS. 2a and 2b are a flow diagram showing the
Note Allocation Routine of the present invention.
FIG. 3 is a sample set of assignment tables.
Fig. 4A is a flow chart for a process of the first step
in the method for accomplishing top-weighted sub-
tractive divisi when there are no more notes than the
number of channels (i.e., when no note overflow con-
dition exists).
Fig. 4B is a flow chart for a process of the second
step in the method for accomplishing top-weighted
subtractive divisi when there are no more notes than
the number of paths (i.e., when no note overflow con-
dition exists).
Fig. 4C is a flow chart for a process of the first step

5 6

EP 2 015 855 B1

5

5

10

15

20

25

30

35

40

45

50

55

in the method for accomplishing bottom-weighted
subtractive divisi when there are no more notes than
the number of paths (i.e., when no note overflow con-
dition exists).
Fig. 4D is a flow chart for a process of the second
step in the method for accomplishing bottom-weight-
ed subtractive divisi when there are no more notes
than the number of paths (i.e., when no note overflow
condition exists).
Fig. 5A is a flow chart for a process of the method
for the first of 5 steps in the main procedure for deal-
ing with top or bottom-weighted subtractive divisi
when there are more notes than the number of paths
(i.e., when a note overflow condition exists).
Fig. 5B is a flow chart for a process of the method
for the second through fourth of 5 steps in the main
procedure for dealing with top or bottom-weighted
subtractive divisi when there are more notes than
the number of paths (i.e., when a note overflow con-
dition exists).
Fig. 5C is a flow chart for a process of the method
for the last of 5 steps in the main procedure for deal-
ing with top or bottom-weighted subtractive divisi
when there are more notes than the number of paths
(i.e., when a note overflow condition exists).
Fig. 6A is a flow chart for a process of a subsidiary
procedure which is a detailed explanation of the
method cited in Fig. 5b for figuring out which notes
comprise the narrowest pitch range within the note
group size being allocated.
Fig. 6B is a flow chart for a process of two further
subsidiary procedures that are branches based on
"No" returns from decision boxes in Fig. 6a.
Fig. 7 is a flow chart for a process of the method for
the main procedure for dealing with additive divisi
when there are no more notes than the number of
paths (i.e., when no note overflow condition exists).
Fig. 8A is a flow chart for a process of the first step
in the method for accomplishing additive divisi when
there are more notes than the number of set priorities
(i.e., when a note overflow condition exists) in which
the size of each note group is established.
Fig. 8B is a flow chart for a process of the second
step in which a group array is initialized and the third
step in which the notes are assigned to groups, still
within the method for accomplishing additive divisi
when there is note overflow.
Fig. 8C is a flow chart for a process of the remaining
primary procedure of the third step of assigning notes
to groups when a note overflow condition exists.
Fig. 8D is a flow chart for a process of a branch of
the third step in the method for accomplishing addi-
tive divisi with note overflow wherein groups are sort-
ed by pitch of contained notes and notes are as-
signed to paths according to priorities.
Fig. 8E is a flow chart for a process of a subsidiary
procedure branching from the third step in the meth-
od for accomplishing additive divisi with overflow

wherein notes are distributed to a single divisi path
with equal playback priority.
Fig. 9A is a flow chart for a process of a subsidiary
procedure which is a detailed explanation of the
method cited in Fig. 8b for figuring out which notes
comprise the narrowest pitch range within the note
group size being allocated.
Fig. 9B is a flow chart for a process of two further
subsidiary procedures that are branches based on
"No" returns from decision boxes in Fig. 9a.
Figs. 10A and 10B is a depiction of how the system
of subtractive divisi determines whether a note
should be played with a normal attack or a soft attack.
This is an expansion of the brief references to parts
of the normal/soft attack method cited in Fig. 4A, 4B,
4C, 4D, 5A, and 5C.
Figure 11 is a block diagram illustrating another em-
bodiment of a note allocation processor according
to the invention.

DETAILED DESCRIPTION

[0023] The present invention departs from traditional
additive polyphony and is based upon a musical concept
known as "divisi." Divisi describes the way an actual or-
chestra would play a musical selection. If, for instance,
an eight cello section of an orchestra were playing one,
two or three notes at the same time, there could never
be more than eight cellos playing at once. If only one
note were being played, all eight would typically play that
note. If two notes were being played, then perhaps four
cellists would each play one note and four cellists would
each play the other note. In reality, sometimes the more
melodically important of the two notes would get prefer-
ential weighting; five cellists might play that note and the
remaining three would play the other note. Similarly, with
a triad (three notes), three cellists might play each of the
two more melodically important notes, while the remain-
ing two cellists played the third note. This is how divisi
works in a real orchestra, and it is implemented there in
part by the composer and/or conductor, and in part by
the lead player for each section; these people determine
which particular instruments sound a given note at any
time. There can never be more notes being created at
one time than there are instruments in that section of the
orchestra (unless of course the instruments themselves
are capable of playing more than one note at a time).
[0024] The invention relies upon two things to function
when the system uses a sampler, (a) the original samples
must be recorded for individual instruments (or subsets
of the full section if not individual instruments), and (b)
the sampler is controlled so that the number of instru-
ments being sounded by the sampler does not exceed a
predetermined number, which number in the preferred
embodiment is the number of uniquely sampled sources
of that instrument. (It may be possible to try to play more
notes than the number of individual instruments which
were originally sampled by combining additive polyphony

7 8

EP 2 015 855 B1

6

5

10

15

20

25

30

35

40

45

50

55

with the present invention so that simultaneous notes
played, in total, exceed the number of uniquely sampled
instruments. In the event that more notes are selected
to be played than the number of individually sampled
instruments, combining additive polyphony to the present
invention would prevent notes from being skipped while
still minimizing unintended organ-like effects.)
[0025] The actual assignment of sampled sounds to
notes played is done using predetermined orchestral
process and/or lookup tables and/or allocation maps (re-
ferred to collectively herein as "assignment tables")
which may be devised by someone with knowledge of
instrumentation. The assignment tables provide instru-
mentation techniques which would be familiar to orches-
tral composers. A primary benefit of the invention in play-
ing sampled (or synthesized) music is that it creates a
much more realistic sound. The invented system may
include a feature which allows for editing or adding lookup
tables by the end user.
[0026] Currently most samplers and synthesizers rely
upon a method of defining their parameters, and trans-
ferring control information, known as MIDI (Musical In-
strument Digital Interface). While the present invention
functions with MIDI systems, it can be implemented on
other or future means of controlling musical instruments
(e.g., MLAN from Yamaha Corporation), and in fact the
invention would likely benefit from faster communications
protocols available with MLAN than is possible with con-
ventional MIDI.
[0027] For purposes of explanation, MIDI terminology
will be referred to herein because that terminology is un-
derstood by those skilled in the art. Of course, the termi-
nology is not necessarily exclusive to the MIDI environ-
ment; terms such as "ports" and "channels" can be ap-
plicable with other means of control. So, for example, in
the invention one MIDI port would be used for a given
section of sampled instruments (i.e., the violins) and each
of the sixteen MIDI channels conveyed by that MIDI port
can request the sounding of a single sample (e.g., one
instrument, such as a violin, playing a single note).
[0028] A sampled sound library should be prepared to
be suitable for use with the invention. Typically this will
be with one musical instrument at a time playing each
note, and stored this way in the sampler’s library. (One
could record two instruments at a time and save that re-
cording as a single sample. For ease of description, we
will discuss recording of individual instruments).
[0029] The sampled sound library is loaded into a suit-
able sampler. The means by which that library is utilized
by the sampler is controlled by the present invention.
[0030] An exemplary implementation would have an
end user playing a musical keyboard, which keyboard
generates note commands as it is played. These com-
mands go to a processor (hardware, firmware and/or soft-
ware), which does the following: it analyzes the number
of notes being played on the keyboard at any one moment
and then assigns the played notes to channels of the
sampler (or synthesizer), and thus ultimately to available

sampled sounds. Assignment is made such that the total
number of sampled instruments playing all the notes
does not exceed the original number of individual instru-
ments (or sounds) that were sampled. (As noted above,
in those rare circumstances when an end user would
cause more notes to be played by one orchestra section
than the number of real instruments which were sampled,
then additive polyphony may be used to have the sampler
play the "extra" notes. Alternatively, the "extra" notes may
be ignored using a predefined priority scheme favoring,
for example, the most recently played notes or the highest
pitched notes.) The notes are dynamically assigned in
response to changes in which keys are pressed, held
down, or released on the keyboard (or any other suitably-
interfaced musical performance controller).
[0031] A single set of assignment tables for assign-
ment of available sampled instruments to notes played
may not be suitable for all types of music or for all types
of instruments. It is expected that commercial embodi-
ments of the invention will include a menu of assignment
tables, with default settings available for various instru-
ment sections. The choices of algorithms/lookup tables,
and provision for user-commanded changes, would allow
for selection of such options as top weighting (where
more instruments sound the highest-pitched note) and
bottom-weighting (where more instruments play the low-
est pitched note).
[0032] Various embodiments of the subject invention
are illustrated in the attached drawings which are referred
to herein.
[0033] FIG. 1 illustrates an embodiment of the inven-
tion shown in a contemplated performance system 10.
This embodiment includes a user input device 101, a
note allocation processor 102, and a note player 103. In
the embodiment described herein, the input device is a
musical instrument keyboard. It may be another device
as well, such as an ASCII keyboard or a MIDI controller.
The note player is a MIDI sampler in the embodiment
described here.
[0034] Note player 103 includes a library of recordings
of notes played by individual instruments which, in the
example discussed here, are comprised in an orchestra.
It should be noted that the library may include other re-
corded sounds as well, such as sound effects, vocals,
and non-orchestral instruments. For simplicity, the de-
scription herein is of a sampler loaded with recordings of
individual orchestra instruments.
[0035] Note allocation processor 102 includes a cen-
tral processing unit ("CPU") 104, note counter 105 and
a channel comparison counter 106, and the following
memory locations: notes-on list 107, assignment tables
108, old note/channel list 109, sorted notes-on list 110,
new note/channel list 111 and channel commands buffer
112.
[0036] The input device, note allocation processor,
MIDI interface and player work together as described be-
low in connection with the discussion of the invented
process.

9 10

EP 2 015 855 B1

7

5

10

15

20

25

30

35

40

45

50

55

[0037] The invented process, as it is most likely to be
used with currently available commercial products, will
rely upon various MIDI channels (which may be from one
or several ports) of the player being assigned to different
orchestra sections. The invention assigns notes for a giv-
en orchestra section to channels within a port such that
each channel of the player will play the sample sound of
a single instrument playing the noted assigned to it. It is
possible to assign some channels of a particular MIDI
port to one section of an orchestra and other channels
of that port to another section of an orchestra. Therefore,
in the discussion which follows, reference will be made
to channels, regardless of ports.
[0038] An end user should perform certain setup steps.
That is, the end user must first decide what section of an
orchestra the input device (here a musical keyboard) will
represent. Note that the end user could designate the
entire keyboard for a single orchestra section (for an eight
cello orchestra section or for a sixteen violin orchestra
section).
[0039] Alternatively, the end user could figuratively
split the keyboard into representations of two orchestra
sections (e.g., the left forty-four keys of an eighty-eight
key keyboard could be for a cello section and the right
forty-four keys could be for a violin section). In such a
case, the keyboard would be deemed to be two separate
keyboards, each acting effectively separate from the oth-
er. When multiple keyboards are used, each keyboard
feeds its signals to a separate note allocation processor
(or note allocation processor module).
[0040] The orchestra section which a keyboard repre-
sents does not have to be a traditional orchestra section
(which is usually composed of a plurality of the same
instrument). The orchestra section that the keyboard rep-
resents could be defined as four violins, two cellos and
two wind instruments such as oboes. The orchestra sec-
tion could also be composed of other "instruments," such
as a waterfall or a baby crying.
[0041] In determining what orchestra section the key-
board is representing, the end user would also determine
how many instruments are in the section and the end
user would then adjust the controls of the player such
that a single channel of the player corresponds to each
instrument.
[0042] The assignment tables loaded into the assign-
ment tables memory location would be selected to take
into account the particular composition of the section rep-
resented by the keyboard and the assignment of the play-
er’s channels.
[0043] In this regard, the user would assure that the
appropriate assignment tables are loaded into the as-
signment tables memory location. Such assignment ta-
bles may be among a large variety of assignment tables
resident in a master file located in another memory loca-
tion in the note allocation processor or in an associated
computer and selected therefrom by the end user for
loading into the assignment tables memory location, or
the assignment tables may be specially written by the

end user and loaded into the assignment tables memory
location.
[0044] The end user would also assure that appropri-
ate samples are located in the player’s sample library (if
it is a sampler) or that the player has the capability to
produce the desired sounds (if the player is a synthesiz-
er).
[0045] The term "note" traditionally means a tone of a
particular frequency. (For example, the frequency of the
note A above middle C on a piano is 440-443 Hz depend-
ing upon what standard or scale is used.) For purposes
of this disclosure, the term "note" includes any sound
which may be produced (e.g., a waterfall or baby crying)
as well as sounds made by traditional orchestra instru-
ments.
[0046] The dynamic note allocation process 20 is illus-
trated in FIGS. 2a and 2b. A signal from keyboard 101,
indicating a new event (i.e., a change in what the end
user desires to be played) is received by the CPU 104
of note allocation processor 102 in step 201. (User input
devices may also provide other instructions besides
which notes should be played. For purposes of the dis-
cussion herein, these other instructions are deemed to
be passed through the note allocation processor.) Even
if the end user’s hand comes down on, or off of, multiple
keys, the actual communication from the keyboard of
changes in the notes being played is serial (one after
another, albeit in possibly very rapid and randomly-or-
dered sequence). After receiving the new event signal,
the CPU then performs step 202, wherein the CPU de-
termines whether or not the event contains a note-on
instruction (e.g., the result of the end user’s pressing
down of a key on the keyboard). If the answer is "yes"
(i.e., it is a note-on instruction), then the CPU performs
step 203, which is incrementing the note counter 105 by
one. (When the note allocation processing is first begun,
the note counter is set to zero.) Then the CPU performs
step 204 in which it adds the note which is being turned
on to the notes-on list in notes-on list memory location
107. If the answer to the query of step 202 is "no" (i.e.,
in which case the event must be the cessation of the
playing of a note and the incoming signal is interpreted
as a note-off instruction), the CPU performs step 205 in
which it decrements the counter by one. The CPU then
performs step 206 in which it removes the note which is
being turned off from the notes-on list in memory location
107.
[0047] If as a result of a note-off instruction, there are
no notes to be played, there is no longer any need for
note allocation. In this regard, the CPU performs step
207 in which it determines whether the note counter has
a value greater than zero. The counter represents the
number of notes being played at any one time (or the
number of notes listed in the notes-on list). If the answer
is "no," then the CPU performs step 208, in which the
CPU causes the note allocation processor to send either
(i) an all notes off command to the player with respect to
all channels corresponding to the keyboard or (ii) individ-

11 12

EP 2 015 855 B1

8

5

10

15

20

25

30

35

40

45

50

55

ual note-off commands to the player fore each channel
currently sounding a note. In addition, in step 208 the
CPU sets the channel comparison counter to one and
sets the contents of the old note/channel list memory
location to null. In an alternative embodiment, step 207
could be a determination of whether there is at least one
note on the notes-on list. Again, if the answer is "no," the
CPU performs step 208. The all notes-off command also
assures that no unintended notes are sounded by the
player 103.
[0048] If the answer to the query of step 207 is "yes,"
or if the answer to the query of step 202 is "yes" and step
204 has been performed, the CPU performs step 209.
[0049] As noted above, the issuance of the all notes
off command (or the individual note-off commands) in
step 208 is a fail safe feature. This feature may be
deemed to be unnecessary. In which case, steps 207
and 208 would be eliminated and the process would pro-
ceed to step 209 from step 204 or step 206.
[0050] In step 209 the CPU sorts all notes currently
being played (i.e. the notes on the notes-on list in notes-
on list memory location 107) according to their pitch and
stores the sorted notes list in sorted notes list memory
location 110. The sorting may instead be done concur-
rently with the addition or removal of a note from the
notes-on list in steps 204 and 206, respectively, and the
notes-on list in memory location 107 then serves as the
sorted note list.
[0051] For the sake of simplicity in this explanation, the
input device is considered to be playing only up to as
many notes as there are channels (and, correspondingly,
instruments) for the section of the orchestra represented
by the keyboard. The invention could be configured to
accommodate the playing of additional notes by, after
step 209, determining how many notes are on the sorted
notes-on list and, to the extent that the number of notes
exceeds the number of channels that correspond to the
keyboard, that number of the lowest notes (in a top
weighted system) are removed from the sorted notes-on
list and read into the sorted notes-on list of a supplemen-
tal note allocation processor which addresses the same
channels of the player so that they play multiple notes
polyphonically, and skipping of notes is avoided. The
supplemental note allocation processor then would as-
sign only one channel to each note, with the lowest pitch
note assigned to highest-numbered channel and so forth
(i.e., in an eight channel setup, the lowest pitched note
would be assigned to the eighth channel and the next
lowest pitched note would be assigned to the seventh
channel). Alternatively, the invention may work so as to
skip the "additional" or "extra" notes pursuant to a priority
scheme, as noted above.
[0052] After step 209 the CPU then performs step 210.
In that step the CPU consults the assignment tables in
assignment tables memory location 108 for the appro-
priate note allocation assignments for the number of
notes to be played. Then the CPU performs step 211,
wherein the CPU, pursuant to the note allocation assign-

ments received in step 210, prepares a new note/channel
list which it stores in new note/channel list memory loca-
tion 111. Pursuant to this list, a channel is correlated to
a note in accordance with the note allocation assign-
ments. As discussed further below, each channel of the
player corresponding to the keyboard receives either (i)
no command to play a sample or (ii) a command to play
a sample of a particular note.
[0053] By way of example, when a note is removed
from a previously played group of notes (i.e., the end
user’s finger is released from a group of notes which had
been held by the end user), channels which previously
were assigned to the released note are reassigned to the
notes still being played. For playing an eight cello section,
assignment tables for eight cellos, such as assignment
tables 301-308 shown in FIG. 3, would have been loaded
into assignment tables memory location 108. If three
notes had been played and these had been sounded by
eight instruments (e.g., eight separate samples of one
cello each), the note allocation processor, with a top
weighted assignment table for three notes (e.g., table
303), would have assigned three channels to the highest
note, three channels to the middle note and two channels
to the lowest note. If the highest note is released by the
end user, then the channels which had been assigned
to that note must be reassigned to the remaining two
notes in order to preserve the orchestral balance. The
steps described up to now accomplish this.
[0054] In this regard, if the system shown in FIG. 1
were being used for allocating notes among the cellos of
an eight cello orchestra section, and if at a particular time
three notes were being played, namely C, E and G, with
G having the highest pitch and C the lowest, the old
note/channel list in memory location 109 would have
three channels (e.g. first, second a third cello channels)
each assigned note G, three channels (e.g., fourth, fifth
and sixth cello channels) each assigned note E, and two
channels (e.g. seventh and eighth cello channels) each
assigned note C. If the new event is the end user lifting
his finger from the G key, the keyboard sends a G note-
off signal to the note allocation processor, which receives
the new event signal in step 201. In step 202 the CPU
determines that this new event is not a note-on signal
and proceeds to step 205. The CPU decrements the note
counter from three to two. In step 206 the CPU removes
G from the notes-on list in memory location 107. The
CPU then performs step 207 in which it determines that
the value in the counter is in fact greater than zero, and
moves to step 209.
[0055] In step 209 the CPU sorts the notes in the notes-
on list by pitch into a sorted notes-on list. The CPU stores
the sorted notes-on list of two notes, E and C (sorted
from highest to lowest pitch) in memory location 110.
[0056] The CPU next performs step 210. In performing
this step, the CPU (i) interrogates either the counter or
the notes-on list or the sorted notes-on list to determine
how many notes are being played concurrently, and (ii)
selects the assignment table which corresponds to that

13 14

EP 2 015 855 B1

9

5

10

15

20

25

30

35

40

45

50

55

number of notes. Here assignment table 302, for two
notes in a cello section, is selected.
[0057] Then the CPU performs step 211. For the ex-
ample discussed here, the predetermined assignment
table 302, for two notes played by an eight cello orchestra
section provides for four channels playing the higher note
and four channels playing the lower note. So, pursuant
to this allocation, the CPU in Step 211 consults the sorted
notes-on list in memory location 110 and assigns the first
through fourth cello channels to play the higher note (here
note E), and the fifth through eighth cello channels to
play the lower note (here note C). In this step the CPU
also creates a new note/channel list which reflects these
new channel assignments and stores the new note/chan-
nel list in new note/channel list memory location 111.
[0058] If the player were of an idealized embodiment,
the CPU would now perform a step of causing the note
allocation processor to send a set of commands corre-
sponding to each of the note allocations set forth on the
new note/channel list to the input of player 103, and play-
er 103 would respond by having each of its respective
channels which correspond to the keyboard play the pre-
recorded sample corresponding to the note assigned to
that channel.
[0059] However, currently available players are con-
figured so that their respective channels continue playing
notes which they have been commanded to play until a
note-off signal is received. That is, current players are
polyphonic and, for example, once a particular channel
has been commanded to play a cello sounding note C,
that channel would continue playing the sample of the
cello sounding note C even after that channel receives
a command to play a cello sounding note E. Such channel
would be playing two notes (i.e., playing two samples,
one of a cello sounding note C and the other of a cello
sounding note E) after receiving the second signal. The
present invention takes the configuration of current play-
ers into account.
[0060] Here a brief explanation of musical terms "hard
attack" and "soft attack" would be helpful. The concept
of a hard attack or a soft attack is not new in electronic
music. The method in which such attacks are invoked as
a response to continuing or reassigned notes, as de-
scribed herein, is new.
[0061] In general, a sound (a sampled note in this case)
which begins abruptly or with a steep increase in ampli-
tude (i.e., a sudden onset of sound) is said to have a
hard-attack. Examples would be such sounds as the
plucked beginning of a guitar note, or the hammered-
down beginning of a piano note. A sound which com-
mences with a gradual increase in amplitude is said to
have a soft attack. Examples would be such sounds as
a gently applied bow to a violin string or a softly blown
flute note. Hard attack and soft attack are terms familiar
to the music business. Many traditional samplers (and
synthesizers) allow for control of the attack characteristic,
by means of shaping the amplitude envelope of the onset
of any given sound. It is also possible to assign control

parameters that select attack characteristics.
[0062] In the case of the note allocation process de-
scribed herein, the concern is not with the hard or soft
attack nature of the sampled sound. The concern is this:
does a given new event comprise a newly-played note
(i.e., a note which is not being played on any of the chan-
nels of the player (and is therefore not listed in the old
note/channel list). If it is, then the player should be com-
manded to play that newly-played note on the channels
assigned that note as a hard attack sound.
[0063] However, if the new event comprises the ces-
sation of the playing of a particular note while other
note(s) are still being held, then the assignment of notes
to channels would essentially be a re-assignment of the
released channels to held notes, and a hard attack would
be inappropriate. Similarly, even when the new event
comprises the addition of a newly-played note to one or
more other notes which continue to be sounded (i.e.,
held), there is likely to be a reassignment of the held
notes among the channels. With respect to a channel
playing a held note (regardless of whether that channel
was that channel which had been playing the note before
the new event), a soft attack is required so that the held
note does not sound as if it were a freshly-played note.
That is, reassigned notes should not sound like new notes
being played; they must smoothly appear without draw-
ing attention to themselves.
[0064] So after step 211 the CPU performs the com-
pare new note/channel list with old note/channel list sub-
routine 212, in which the CPU compares the new
note/channel list in memory location 111 to the old
note/channel list that is stored in memory location 109,
on a channel-by-channel basis.
[0065] For each channel, one of four possibilities ex-
ists:

(i) it is going to continue playing the same note which
it is currently playing (i.e., the channel will be playing
the same note that it was playing before the new
event), in which case the CPU causes no signal to
be sent to the player with respect to that channel
because, as mentioned above, current players have
each of their channels continue to play whatever
sample they are playing until a note-off command is
received by the player;
(ii) it is going to play a note which is not currently
being played by any channel on the note/channel list
(i.e., the note is not listed on the old note/channel
list), in which event the CPU causes two commands
to be sent to the player with respect to that channel,
first a note-off command with respect to the note cur-
rently being played by that channel and second a
note-on command with respect to the new note for
that channel, which note-on command is accompa-
nied by a hard-attack instruction;
(iii) it is going to play a note that is new to that channel
but was being played by at least one other channel
before the new event under discussion (i.e., the note

15 16

EP 2 015 855 B1

10

5

10

15

20

25

30

35

40

45

50

55

is listed on the old note/channel list), in which case
the CPU causes two commands to be sent to the
player with respect to that channel, first a note-off
command with respect to the note currently being
played and second a note-on command with respect
to the new note for that channel, which note-on com-
mand is accompanied by a soft-attack instruction;
(iv) no note is to be played by the channel, in which
case the CPU causes a note-off command to be sent
to the player with respect to that channel.
So, in subroutine 212, the CPU performs step 213
with respect to each channel. In this step the CPU
queries whether the channel is to be playing the
same note as it was playing before the new event.
If the answer is "yes," then no signal is sent to that
channel. If the answer is "no," then the CPU performs
step 214 in which the new note/channel list is queried
to see if any note is to be played by that channel.

[0066] If the answer is "no," then step 215 is performed,
in which the CPU sends a note-off command to the chan-
nel commands buffer in memory location 112 with re-
spect to the note which is currently being played by that
channel.
[0067] If the answer to the query in step 214 is "yes,"
then step 216 tests to see if the new note on that channel
is the same as any notes on the old note/channel list. If
the answer is "no," step 21.7 is performed in which the
CPU sends to the channel commands buffer in memory
location 112, with respect to that channel, a note-off com-
mand with respect to the note that is currently being
played on the channel (as listed on the old note/channel
list) and a new note-on command, which note-on com-
mand includes the identity of the note on the new
note/channel list corresponding to the channel being
compared, along with a hard attack instruction.
[0068] If the answer to the query of step 216 is "yes,"
step 218 is performed in which in the CPU sends to the
channel commands buffer with respect to that channel a
note-off command with respect to the note that is cur-
rently being played on the channel (as listed on the old
note/channel list) and a new note-on command, which
note-on command includes the identity of the note on the
new note/channel list corresponding to the channel being
compared, along with a soft attack instruction.
[0069] Alternatively, step 216 could instead test to see
if the answer to the query of step 202 is "yes" (or if the
new event is a note-on signal). If, with respect to this
alternate version of step 216, the answer is "yes," then
step 217 is performed as described above, and if the
answer is "no," then step 218 is performed as described
above.
[0070] After each of steps 213, 215, 217 and 218, the
CPU performs step 219 in which the CPU determines
whether the value of the channel comparison counter is
equal to the number of channels on the new note/channel
list. (The number of channels on the new note/channel
list is the same as the number of instruments in the or-

chestra section which is being played.) If the answer to
the query of step 219 is "no," this means that the com-
parison of the new note/channel list with the old
note/channel list has not been completed with respect to
every channel. In which case, the CPU performs step
220 in which the channel comparison counter is incre-
mented by one. Then the CPU returns to step 213 and
repeats the portion of the process beginning with that
step until the comparison is completed with respect to all
of the channels.
[0071] If the answer to the query of step 219 is "yes,"
this means that the comparison of the new note/channel
list with the old note/channel list has been completed with
respect to every channel. In which case, the CPU per-
forms step 221 in which the CPU (i) causes the note
allocation processor to send the commands in the chan-
nel commands buffer to the player’s input, (ii) writes the
new note channel list into the old note/channel list mem-
ory location 109 (i.e., the new note/channel list becomes
the old note/channel list for the next event), and (iii) sets
the channel comparison counter to one.
[0072] The setting of the channel comparison counter
to one could instead be done as part of step 201 or step
211 any other time prior to entering the compare new
note/channel list with old note/channel list subroutine.
[0073] In addition, the contents of the channel com-
mands buffer should be erased as part of step 201 or
step 211 any other time prior to entering the compare
new note/channel list with old note/channel list subrou-
tine.
[0074] The system and process described above pro-
vides a test for each channel to see if it is playing a held
note (i.e., any note appearing on the old note/channel
list) and if so, the corresponding channel in the player is
commanded to play the note with a soft attack. (If the
channel were already playing the same note, then no
command need be sent to the player with respect to that
channel and that channel would continue to play the
same note.) If it is not a held note, then it is a newly-
played note, and, as noted above, step 217 provides that
the note-on command for that note will include a hard
attack instruction. (It has earlier been mentioned that with
respect to the playing of a new note, the keyboard may
have included additional instructions which are passed
through the note allocation processor. Such instructions
may override the hard attack instruction provided by step
217.)
[0075] Returning now to the discussion of the example
of assigning notes to the channels of a system emulating
an eight cello orchestra section (in which the CPU per-
formed step 211 by assigning note E to the first through
fourth cello channels, and note C to the fifth through
eighth cello channels and creating a new note/channel
list reflecting these channel assignments and storing the
new note/channel list in new note/channel list memory
location 113), the CPU next performs step 212. This is
the Compare New Note/Channel List with Old Note
Channel List Subroutine described above.

17 18

EP 2 015 855 B1

11

5

10

15

20

25

30

35

40

45

50

55

[0076] The old note/channel list (in memory location
109) and new note channel list (in memory location 111)
are as follows:

[0077] In performing the Compare New Note/Channel
List with Old Note Channel List Subroutine, the CPU per-
forms step 213 in which the CPU checks the value of the
channel comparison counter and compares the note on
the new note/channel list for the channel corresponding
to that value with the note on the old note/channel list for
same. Since this is the first time that step 213 is being
performed since the new event, the value of that counter
is one. So, the CPU compares the channel 1 assignments
of the old and new note/channel lists. Here the answer
to the query of step 213 is "no" (i.e., the notes for channel
1 are not the same for both lists). The CPU then performs
step 214 to assure that channel no. 1 does have a note
assigned to it pursuant to the new note/channel list. The
answer to this query is "yes" and the CPU performs step
216 in which it determines whether the note assigned to
channel no. 1 on the new note/channel list is the same
as any note on the old note/channel list. The answer to
this query is "yes" because, even though note E is "new"
to channel no. 1, note E was assigned to at least one
channel pursuant to the old note/channel list. The CPU
then, pursuant to step 218, sends to the channel com-
mands buffer in memory location 114 with respect to
channel 1 a note-off command (i.e., that note G should
not be played) and a note-on command (i.e., command-
ing that channel 1 play note E), which note-on command
is accompanied by a soft attack instruction. The CPU
then performs step 219, in which the answer to the query
of that step is "no" because the number of channels on
the new note channel list is eight while the value of the
channel comparison counter is only one. The CPU then
performs step 220 in which it increments the channel
comparison counter by one (i.e., to a value of two).
[0078] So, the CPU returns to step 213 in which it per-
forms as described in the paragraph above, this time with
respect to channel no. 2. Since channel no. 2 on the new
note/channel list is compared to channel no. 2 of the old
note/channel list, the results for channel no. 2 are the
same as for channel no. 1, except this time when the
channel comparison counter is incremented by one in
step 219, its value becomes three.
[0079] The CPU returns to step 213 in which it performs

Old Note/Channel List New Note/Channel List

Channel No. 1: G Channel No. 1: E
Channel No. 2: G Channel No. 2: E
Channel No. 3: G Channel No. 3: E
Channel No. 4: E Channel No. 4: E
Channel No. 5: E Channel No. 5: C
Channel No. 6: E Channel No. 6: C

Channel No. 7: C Channel No. 7: C
Channel No. 8: C Channel No. 8: C

as described in the paragraph above, this time with re-
spect to channel no. 3. The result is the same as with
channels nos. 1 and 2, except this time when the channel
comparison counter is incremented by one in step 220,
its value becomes four.
[0080] The CPU returns to step 213, this time to check
if the note assigned to channel no. 4 on the new
note/channel list is the same as the note assigned to
channel no. 4 on the old note/channel list. Now the an-
swer is "yes" (note E is the note assigned to channel no.
4 on both note/channel lists). Therefore, the CPU pro-
ceeds directly to step 219 (i.e., no command with respect
to channel no. 4 need be sent to the channel commands
buffer). The answer to the query of step 219 is "no" be-
cause the number of channels on the new note channel
list is eight while the value of the channel comparison
counter is four. The CPU then performs step 220 in which
it increments the channel comparison counter by one
(i.e., to a value of five).
[0081] Again the CPU returns to step 213, this time to
check if the note assigned to channel no. 5 on the new
note/channel list is the same as the note assigned to
channel no. 5 on the old note/channel list. The answer
is "no," and the CPU performs as described above for
channels nos. 1,2 and 3, except that, pursuant to step
218, the CPU sends note-off command for the note E
and a note-on command for playing note C, and, pursuant
to step 220, the channel comparison counter is incre-
mented from five to six.
[0082] The CPU returns to step 213 in which it performs
as described in the paragraph above, this time with re-
spect to channel no. 6. The result is the same as with
channel no. 5, except this time when the channel com-
parison counter is incremented by one in step 220, its
value becomes seven.
[0083] Once again the CPU returns to step 213, this
time to check if the note assigned to channel no. 7 on
the new note/channel list is the same as the note as-
signed to channel no. 7 on the old note/channel list. Be-
cause the answer is "yes," the CPU performs as de-
scribed above in connection with channel no. 4, except
that when the CPU performs step 220, it increments the
channel comparison counter to eight.
[0084] The CPU returns to step 213, this time to check
if the note assigned to channel no. 8 on the new
note/channel list is the same as the note assigned to
channel no. 8 on the old note/channel list. Because the
answer is "yes," the CPU performs as described above
in connection with channels nos. 4 and 7, except that
when the CPU performs step 219, the answer to the query
is "yes" (i.e., both (i) the number of channels on the new
note channel list and (ii) the value of the channel com-
parison counter are eight). Instead of performing step
220 after step 219, the CPU performs step 221 in which
it (i) causes the note allocation processor to send channel
commands from the channel commands buffer to the
player (namely, for channel 1, a G note-off command and
an E note-on command with soft attack instruction; for

19 20

EP 2 015 855 B1

12

5

10

15

20

25

30

35

40

45

50

55

channel no. 2, a G note-off command and an E note-on
command with soft attack instruction; for channel no. 3,
a G note-off command and an E note-on command with
soft attack instruction; for channel no. 4, no command
(i.e., the player’s channel no. 4 will keep playing whatever
note it is already playing); for channel no. 5, an E note-
off command and an C note-on command with soft attack
instruction; for channel no. 6, an E note-off command
and an C note-on command with soft attack instruction;
for channel no. 7, no command; and for channel no. 8,
no command); (ii) writes the new note/channel list into
old note/channel list memory location 109 (and erasing
what was there before), and (iii) sets the channel com-
parison counter to one.
[0085] At this point the note allocation processor has
completed the note allocation process for the event and
is ready to process the next event which comes along.
[0086] In a contemplated embodiment, the player
would be a sampler with each channel of the sampler
having a specific library associated with it. For example,
for the playing of an eight cello orchestra section, the
library for channel no. 1 would include recordings of a
first chair cellist playing a set of notes; the library for chan-
nel no. 2 would include recordings of a second chair cel-
list, and so on. With such special libraries, a real orchestra
could be even more closely emulated. In this regard, as-
signment tables could have additional impact, with the
most important notes being played by the recordings of
the most skilled musicians.
[0087] The note allocation processor and player, or the
input device, note allocation processor and player, may
be manufactured as an integrated whole product. The
description set forth above would still apply.
[0088] The note allocation processor may be used in
connection with live performances or in connection with
recording music in studio sessions. In addition, each set
of commands which are sent to the channel commands
buffer may be recorded automatically and reproduced as
music charts or musical scores for orchestration, or for
generating stored note-playing data for subsequent gen-
eration of synthesized sound or orchestration.
[0089] As noted above, various embodiments of the
invention may utilize an various processes to perform
various functions and features of the invention. The proc-
esses may be implemented using software, hardware,
or a combination thereof which can be operated in a gen-
eral purpose or a specifically tailored computer. The proc-
ess may also be incorporated into a musical instrument,
such as a digital sampler, a synthesizer, etc. One exam-
ple is the use of a divisi process in a computer or a musical
composing instrument. The core divisi process is Sub-
tractive Divisi, in which multiple instruments (or multiple
clusters of instruments) are divided to play, respectively,
two or more notes that are sounding at once. We gener-
ally use the terms "path" or "divisi path" herein rather than
"instrument" because it is less restrictive; any sound,
whether made by or emulating a musical instrument or
some other source can be assigned to a "path," and a

given path may represent a single instrument or multiple
instruments. So a "path" is a way to address a stored
sound, and typically it’s synonymous with a MIDI channel,
though any functional addressing scheme can be used
in conjunction with a path. Because the exemplary proc-
esss are devised to work in a MIDI environment and were
so tested, we sometime use the term "channel" rather
than "path" and in this context "channel" refers to a MIDI
channel.
[0090] When only a single note is sounding, technically
there is no divisi occurring because all instruments are
playing that one note, although this situation is nonethe-
less accommodated by the methods presented herein
so that there is a unified way to handle any number of
notes being sounded. Top Weighting and Bottom Weight-
ing are choices one sets for a given instance of divisi,
wherein a non-evenly divided set of instruments (paths)
are addressed to yield more sound power (more paths)
on the higher notes (top weighted) or on the lower notes
(bottom weighted). Typically Bottom Weighting is used
on lower pitched instruments such as celli or tubas,
whereas Top Weighting is used on higher pitched instru-
ments such as violins or trumpets.
[0091] The authors have used the C++ computer lan-
guage to implement the various divisi processes dis-
cussed herein, but any suitable computer language, or
indeed even analog devices or dedicated digital circuits
could be used to implement the essence of the methods
described. There are varying degrees of abstraction in
such an implementation, and for this reason we present
flow charts that explain the basic steps involved; these
should not be considered to be restrictive or definitive
but they should give a technician or programmer skilled
in the art enough information to create a functioning im-
plementation of the divisi methods described.
[0092] Different procedures are required in order to al-
locate channels to notes whenever there are more notes
being played than the number of paths available to play
them (i.e., where there is "overflow" or "note overflow");
these procedures are described after the basic proce-
dures wherein the number of notes being played is equal
to or less than the number of paths available to play them
(i.e., where there is no overflow).
[0093] Fig. 4A is the first of two illustrations of how Top
Weighted Divisi may be implemented using software,
hardware, or a combination thereof. In 400 through 410
an optional soft attack flag is set, and some values are
initialized to establish the number of available channels
(paths) and their priority. This first process begins in 415
as the system accepts an input from some source of
notes, and identifies the number of notes present. A loop-
ing index is initialized to a value of 1 (starting point, first
note) in 420. Step 1 of this process computes the number
of channels (paths) to be allocated to each note, begin-
ning at 425 where the notes to be played are listed ac-
cording to their MIDI values, which automatically sorts
them from highest pitch (high MIDI number) to lowest
pitch (low MIDI number). Test 430 checks to see if all the

21 22

EP 2 015 855 B1

13

5

10

15

20

25

30

35

40

45

50

55

notes have yet been processed, and a "yes" result indi-
cates there are still more notes to process. So in 435,
440, 445 and 450 a value is derived for how many chan-
nels will be allocated to the present note, looking at how
many channels have yet to be allocated and how many
notes have yet to be processed. The counters and index-
es are updated in 455 and 460, and again a test is made
at 430 to see if any notes remain to be processed. If not
a "no" is returned and the process moves on to Step 2.
[0094] In Step 1 the number of channels per note were
determined, but not the specific channels or specific
notes to be associated with one another. In Fig. 4B, Step
2 depicts the means by which the available channels are
now specifically allocated to specific notes in the list of
notes to be played. Initializing a note index to 1 at 465,
and beginning with channel 1 at 470, a test is made in
475 to see if there are any more notes to which channels
must be assigned. If there are (yes) then the current note
is fetched from the list of notes in 480 and a test is made
to determine if the note has yet been played by all chan-
nels which are supposed to play it per 485. If it’s not (yes)
there is a test to determine whether the note to be played
should have a soft attack 487, and if the soft attack flag
is set true then the current channel plays that note with
a soft attack instruction 489. If test 487 shows a soft attack
flag is not set, then the current channel plays that note
with a normal attack instruction (490), the channel index
is incremented (495), and the test of 485 is repeated.
This process continues until the number of channels that
are supposed to play the note have played it, at which
point 485 returns a No, the note index increments in 497,
and again test 475 is performed to see if any notes remain
to be so processed (i.e., to see if any notes have yet to
be played by remaining channels). If there are not more
notes, 475 returns a No and the process is completed
per 499. At this point, divisi has been applied to all notes
such that all channels have been assigned and played.
[0095] Fig. 4C is the first of two illustrations of how
Bottom Weighted Divisi may be implemented. It is some-
what similar to Fig. 4A for Top Weighted Divisi. The first
difference occurs right after test 4330 (similar to test 430
in Fig. 4A) where the function 435 from Fig. 4A is gone
and instead we gain the functions 4335 and 4340 of Fig.
4C in which an array index is set and a channel list is
made which essentially builds in reverse order compared
to the additive divisi process. Other than that, the calcu-
lation of channels per note in 4335 through 4355 of Fig.
4C is pretty much like than in 435 through 450 of Fig. 4A.
[0096] In Step 1 of Fig. 4C the number of channels per
note were determined, but not the specific channels or
specific notes to be associated with one another. So this
process now occurs in Step 2, as shown in Fig. 4D, which
is essentially identical to the process of Fig. 4B, Step 2.
The only difference is that because the list of channels
per note was built "upside down" in Fig. 4C relative to
Fig. 4A such that the greater number of paths is assigned
to lower MIDI number (lower pitch) notes, the actual chan-
nel to note allocation winds up as a bottom weighted al-

location, assuming there is a non-even division of chan-
nels to notes. It should be appreciated that when the
number of channels is evenly divisible by the number of
notes, there is no difference in the result whether using
the top or bottom weighted divisi method.
[0097] Overflow situations can occur in subtractive or
additive divisi, but they require somewhat different
processing in each case. Subtractive divisi overflow is
handled by Process 3; this is what must occur when there
are more notes than there are available paths (or chan-
nels) to play those notes. The same overflow procedure
handles top or bottom weighted subtractive divisi, and
this procedure is more complex than the non-overflow
procedures; it is revealed in Figs. 5a, 5b, 5c, 6a and 6b.
Since the number of notes exceeds the number of chan-
nels, there must be at least one channel (path) that will
play more than a single note. Process 3 allows for each
channel to potentially receive a "group" of notes, although
that group may consist of only one note. Still, the process
must assign a group of notes to each channel.
[0098] Referring to Fig. 5a, lists and variables are ini-
tialized and organized in 500 through 505, incoming
notes detected, counted and listed in 510 and 515, and
a list of notes left with a channel index set up in 520 and
525 as the process begins. The first thing to do in Step
1 is to compute the size of each note group - not neces-
sarily which notes are in the group, just how many groups
there are and how many notes are in each group. This
computation occurs in 530 through 560. There are as
many groups as there are channels, and so by examining
the number of notes and iterating a process of division
and group sizing, we come up with how many notes must
be in each of the groups. Since a note cannot be "split"
- it must be played by one or another channel - step 550
rounds up in the event the division of 545 creates a non-
integer result. As soon as all the notes have been ac-
counted for (not actually allocated, but used to calculate
note group sizes), 530 returns a No and the procedure
moves on to Step 2.
[0099] In Fig 5a, Step 1 the number of groups and the
number of notes per group (i.e., per available channel)
were determined, but not the specific channels or specific
notes to be associated with one another. Steps 2 through
4 in Fig. 5b organize the association of specific notes to
groups by building what is essentially a two-dimensional
array that contains a set of distinct note lists, one list per
each channel. Step 2, 565 through 580, simply initializes
the flags in the array so that all notes are shown as not
yet being assigned to any note group. Once that’s done,
570 returns a No and the procedure moves to Step 3
where the individual note groups are actually created
(i.e., where the previously determined size groups are
now populated by allocating specific notes to specific
channels). In 585 the index is initialized to begin with the
first group and test 590 checks to see if there are any
more groups to be populated with notes. If the test returns
a Yes then it finds the size (number of notes) of the current
group being populated in 600, and in 605 it we parses

23 24

EP 2 015 855 B1

14

5

10

15

20

25

30

35

40

45

50

55

the entire list of notes yet to be played (i.e., those not yet
flagged as having been assigned to a group) to see which
contiguous set of notes that number the same as the
group size span the smallest (narrowest) range of pitch-
es. One method for performing this step by calling up an
entire subsidiary procedure, is revealed in detail in Figs.
6a and 6b. According to this example, when one instru-
ment (or one cluster of instruments) is going to play mul-
tiple notes, those notes should be close together in pitch.
So for example if there are 8 notes being played, but only
3 paths (channels) then two channels will have to play 3
notes each, and one will have to play 2 notes; the "find
narrowest grouping" procedure then looks to see which
set of 3 contiguous notes is narrowest in pitch if the proc-
ess is working on one of the 3-note groups, and it assigns
them to the group of 3 notes being "populated." This proc-
ess is explained in more details below with reference to
Figs. 6a and 6b. In 610 the note group is "attached to"
or associated with the narrowest contiguous collection
of notes from 605, an index is reset in 615, and then in
620 through 635 the notes that were just attached to a
group are flagged as having been assigned so those
notes are not considered in subsequent parses of "nar-
rowest notes" for subsequent groups to be populated. In
625 a test is made to see if all the notes in the current
group have been flagged, and if they have, then a group
index is incremented in 645 and the procedure cycles
back to test 590 to see if any further groups remain to be
populated with notes. If No returns, the process moves
on to Step 4 at 650.
[0100] Step 4 is a simple sorting of the list of the groups
from top (highest pitched note(s)) to bottom (lowest
pitched note(s)). Once this has been accomplished, the
groups are ready to be played in the next step. Fig. 5c
shows Step 5, the playing of the notes for each group
(i.e., notes played by each instrument or collection of
instruments addressed on a single divisi path). After in-
itializing the channel counter in 660 to begin with the first
channel, test 665 checks to see if there are any channels
yet to be played. Of course there are in the first test so
with a Yes returned, the information for playing the first
set of notes (i.e., the first group to be played) is assembled
in 670 through 680. Test 685 checks to determine if any
of these notes has yet to be played, which of course re-
turns a Yes the first time through and in 690 an index
points to the current note which is played in either 695
or 697, that is the note is played with a normal or a soft
attack, as directed by test 692 which checks the status
of the soft attack flag. The note index increments in 700,
the process cycles back to test 685 and if there are more
notes to be played, the process continues to increment
through them and play them in 690 through 700. When
test 685 indicates all the notes in the group have been
played, returning a No, then the channel number is in-
cremented in 705 (indicating we’re going on to the next
group), and test 665 checks to see if any more channels
have yet to be played if so, the whole cycle of Step 5
continues, and if a No returns then the main procedure

for this process is ended in 710. In other words, all notes
in all groups have been played.
[0101] Fig. 6a is the first of two diagrams showing the
subsidiary procedure for actually figuring out which of the
available notes comprise the narrowest grouping when
two or more notes are to be played by the same channel
in a subtractive divisi with overflow, as alluded to very
briefly in 605 of Fig. 5b. Here we first initialize the variable
NarrowestPitchRange in 800 to be an arbitrarily high val-
ue (the widest range possible in the context of 128 pos-
sible MIDI note values), and we initialize the Narrowest-
PitchRangeIndex 805 to minus 1 so it points to nothing,
and the NoteGroupSize 810 is initialized to zero. We then
begin the procedure to figure out which notes comprise
the narrowest set of notes for the current group. Test 815
checks to see whether the group is comprised of at least
two notes; if not, then "narrowest" doesn’t really mean
much since there is only one note, and the procedure
jumps to Fig. 6b, column "A" where either test 960 de-
termines there are no more notes left to be assigned, or
loop 965 through 990 finds the first note which is not yet
assigned and assigns it to the group (a group of one)
then flags that note as having been used. Thereafter test
960 will find there are no more notes to assign and end
the subroutine at 995.
[0102] If the test in 815 indicates the group is more
than one note, then an outer loop limit is set in 820, an
index set in 825, and test 830 checks to see if the looping
index has yet incremented to indicate all possible note
sets have been evaluated for this particular group size;
of course in the first test this isn’t so and a Yes is returned.
Initialization of the current test for the first set of notes
spanning the current group size is now done; the pitch
range of the current group is set to zero in 835, the group-
ing flag to valid in 840, and the inner note index and inner
loop limit are set in 845 and 850. This prepares the stage
for parsing the list of available notes (starting at the high-
est pitch or highest MIDI number) to determine the range
of pitches covered by the number of notes in the group.
In 855 a test is made to see if there are any more note
groupings to be evaluated. Of course there are in the first
pass so a Yes is returned and we go to procedure 860
through 880. In test 860 we look at the note to which the
index points, and to the next note in the list and if either
one has been assigned to a group already, we set the
valid grouping flag to be false in 865, then go to 870; if
neither note has been assigned to a group, we go directly
to 870 and there we calculate the pitch spread for this
pair of notes. In 875 we add that range to whatever range
has already been established (it began at zero from 835)
and in 880 we increment an index, return to 855, and test
to see if more notes have yet to be tested for this group
size within the current list position. If Yes, we repeat 860
through 880, thus increasing the pitch range by the ad-
ditional "spread" of the next note. As soon as test 855
returns a No we can store that pitch range in a list and
then set some indices to continue checking for the next
possible pitch range value based on starting in the next

25 26

EP 2 015 855 B1

15

5

10

15

20

25

30

35

40

45

50

55

note of the list. In loop 900 through 920, we increment
down the list of available notes and return to 830 where
we repeat the process of calculating the pitch range
across the span of notes equal to the group size, storing
that result and so forth.
[0103] When all possible sets of notes in the list have
been parsed to calculate the pitch range for the current
group size, test 830 will return a No, and the procedure
jumps to the procedure in column "B" of Fig. 6b whereby
the actual narrowest pitch range set of notes for the cur-
rent group is established. A given pass through the
processing of Fig. 6a will either branch to Fig 6a column
"A" (when there is a single-note group) or to column "B"
(when there is a group of 2 or more notes). So it is from
column "A" or "B" that the END occurs once the group
has been assigned its note(s). In column "B" test 1000
checks to see if the Narrowest Pitch Range Index is not
equal to -1. If it is equal to -1, No returns to indicate there
are no more notes to handle and the procedure ends in
1005. Otherwise Yes returns and some values are ini-
tialized in 1010 and 1015 to set up a note allocation loop
whereby notes from the now-established narrowest
range within the list of notes are actually assigned to the
current group. In test 1020 a test is made to see if any
more notes are left to be assigned to the current group.
If they are Yes returns and in 1030 through 1040 the note
is assigned, the index increments in 1045, and the loop
repeats until all the sequential notes in this sized group
are assigned to the current group, at which point test
1020 goes to No and the procedure ends at 1025. At this
point the Narrowest Grouping of more than one note has
been established and populated.
[0104] Additive divisi can be used for creative effects
within a single type of instrument (a single section of like
instruments) or for orchestrational assignment of notes
to multiple sections of instruments. If one were using ad-
ditive divisi in a single section, it would assign one note
to the first path, the second note to the next path, and so
forth. However, additive divisi may be used to address
multiple sections of instruments, and such sections can
be set with specific "priority" values. Paths (sections) with
a priority of "one" will play when one note is played. Paths
(sections) with a priority of "two" will play when a second
note is played, and so forth. If multiple paths share the
same priority, these paths will all be allocated the same
note(s). The point is that unlike subtractive divisi where
a constant number of paths is always addressed and
these are allocated among whatever number of notes
are played, additive divisi increases the number of paths
played as the number of notes played increases, up to
the point where the number of notes equals the available
number of priorities. The key to Additive Divisi is that it
provides an ordering procedure for sequentially joining
instruments into a composition. Additive Divisi with Over-
flow provides the means for distributing notes when the
number of notes exceeds the number of additive priority
settings one has established for the additive divisi. Once
overflow occurs, subtractive divisi may be invoked which

is why we retain the term "divisi" for the additive process.
[0105] The additive divisi process (without overflow) is
depicted in Process 4 as shown in Fig. 7. This process
only applies when the number of notes played is less
than or equal to the number of priorities available to play
them; otherwise we use Process 5 which includes provi-
sions for note overflow (per Figs. 8 and 9). Initially the
list of notes is sorted by pitch and a pointer is aimed at
the first note in 1100 and 1105. Then a test is made to
see if any notes remain to be processed in 1110 which,
at least on the first pass is going to return a Yes. The first
check is done to see which priority 1 paths need to be
assigned as set up with 1120 through 1130 where, since
the note index has been set at 1, and the current priority
is matched to the note index, priority 1 paths are first to
be processed for potential note assignments. In 1135 we
test to see if any more paths have yet to be processed,
and on the first pass through the process this too will be
true and a Yes will be returned, so we go on to the test
of 1140 where we see if the current path priority is equal
to the priority we’re wanting to allocate. If it is, Yes returns
and we distribute the current note to that path. This
means that whatever instruments or players (or desks of
instruments/players) are on the current path are all now
going to play the assigned note in 1145; it could be many
instruments or a solo instrument. It could also be an entire
section of instruments such as "first violins." Since the
Number Of Notes to be played is less than or equal to
the Number Of Paths at this point, there is no subtractive
divisi among instruments. (In the overflow situation de-
scribed in Process 5, there may be subtractive divisi with-
in a section as part of the additive process). We then
increment the path index in 1150. If the test of 1140 in-
dicates the path priority is not equal to the priority we’re
wanting to allocate, then a No returns, we don’t distribute
notes and instead we go directly to 1150 and increment
the path index. After 1150 the procedure loops back to
test 1135. As long as the path index is less than or equal
to the number of paths (with the current priority) the proc-
ess of 1135 through 1150 will continue to allocate the
current note to each such path. When 1135 returns a No,
this indicates all paths with the current priority have had
the note allocated to them, so the Note Index increments
in 1155, and the procedure loops back up to 1110 to test
if any more notes remain to be processed. A Yes contin-
ues through the allocation process of 1120 through 1150
allocating the next note to whatever paths have the next
priority value, and a No indicates all notes have been
allocated and the process ends with 1115.
[0106] Additive divisi overflow differs from subtractive
divisi overflow in that it’s not defined by having more notes
than paths, but by having more notes than priorities. Each
path is assigned a priority, but these are not exclusive;
multiple paths can share the same priority. So for exam-
ple consider a situation with 4 notes and 4 paths. In sub-
tractive divisi this would not run into overflow, but in ad-
ditive divisi it might, depending upon whether two or more
paths share the same priority. If the paths are set such

27 28

EP 2 015 855 B1

16

5

10

15

20

25

30

35

40

45

50

55

that there are only 1 or 2 or 3 priorities, then the 4 notes
would exceed the number of priorities and an additive
divisi overflow condition would exist. If each path had a
different priority, then overflow would not occur. The pro-
cedure for additive overflow is depicted by Process 5 in
Figs. 8a, 8b, 8c, 9a and 9b and is very similar to that for
subtractive divisi. In fact, the major differences are (a) a
lack of concern for top versus bottom weighting, and (b)
tests which look for the number of available priorities rath-
er than the number of available paths. Because the pro-
cedures are otherwise almost the same as those de-
scribed for Figs. 5a, 5b, 5c, 6a and 6b we won’t discuss
them step-by-step here.
[0107] Figs. 10A and 10B show how subtractive divisi
processes deal with notes released from a held chord,
as contrasted to the initiation of a new note or chord. This
process applies to all subtractive divisi methods (whether
top or bottom weighted, with or without note overflow),
but not to any additive divisi methods. The concept is that
in subtractive divisi, as soon as one or more notes is
being played, all available paths (channels) are instruct-
ed to play, i.e., to sound a note. The specific allocations
of channels to notes is, of course, the nature of the sub-
tractive divisi methods just described herein. There is a
situation, however, that occurs when a chord (i.e., a group
of two or more simultaneously sounding notes) is being
played, and then a subgroup, i.e., at least one of those
notes, is released (no longer played) while at least one
remainder note of the group continues to sound. In this
case, the channels (paths) that had been previously al-
located to the subgroup of released note(s) are no longer
playing those notes. Correct ensemble behavior, that is
correct orchestration, calls for these now disused chan-
nels to be quickly reassigned to play whatever note(s)
remain in play from the existing chord. Therefore, it is
desirable to re-parse the remaining note(s) and deter-
mine which channels will now play them. However, it
would not be musically desirable to simply issue new
note-on commands to any reallocated channels; as doing
so would cause a fresh "attack" for all such reallocated
channels, and the effect would be as though the existing
notes were played again. That is, instead of a piano play-
er holding down a key after letting up other fingers, it
would be as if he or she let go of all the keys then came
back down on the key(s) that were intended to continue
sounding.
[0108] The non-musically correct rejoining of reallocat-
ed channels to notes still in play would occur if all notes
initiated with a normal attack, which might also be de-
scribed as a "hard attack," although in some cases it’s
not especially hard or sudden. Live musicians who play
in ensemble, for instance a section of violinists, naturally
control their playing style when they abandon a released
note of a chord and join other players who are continuing
to play existing notes. In such cases, the players who are
joining the remaining notes will softly begin playing the
new (for them) notes. A violinist therefore would softly
begin stroking the strings with the bow, and build up to

the desired intensity instead of using a sudden and strong
bow motion. A trumpet player might softly blow without
tongue accentuation, building up his breath to strengthen
the note so it seamlessly joins other trumpeters. A mu-
sical synthesizer or sampler can be set up to have both
normal and soft-attacked notes using various means, but
such notes must be invoked appropriately if the musical-
ity of reallocated channels upon note release is to be
achieved. The process of Step 10, illustrates one exam-
ple of how to instruct the synthesizer or sampler which
type of note attack to use, normal or soft. Functionally,
Step 10 may be placed at the start in the sequence of
events, but it is described here last because it is easier
to do so after the initial divisi processes has been de-
scribed.
[0109] In the example of Figures 10A and 10B, the soft
attack/normal attack designation process involves set-
ting up four new arrays 1800, which can be thought of
as indexed matrices in which values are stored or altered
during the soft attack processing. Moreover, three lists
are generated by counting the items as they are used to
populate three of these arrays: the count of how many
notes have just been released is based on how many
notes are in the ListOfNotesOff and is saved as a variable
NumberOfNotesOff, the count of how many notes have
just been placed in the ListOfNewNotesOn is saved as
the variable NumberOfNewNotesOn, and the count of
how many notes are in the ListOfNotesSounding is saved
as the variable NumberOfNotesSounding.
[0110] Starting at 1805, the process initializes all the
ListOfSoftAttacks flags as being false in the process of
loop 1810 through 1820, after which the next loop of steps
from 1825 through 1875 examines the ListOfNotesOff
and removes these notes from the ListOfNotesSounding
in order to generate an updated list of those notes still
playing. It also removes the notes off from the ListOf-
SoftAttacks. When all the ListOfNotesOff has been proc-
essed, test 1830 in Fig. 10A returns a No and the ensuing
loop in Fig. 10B of 1880 through 1895 sets all remaining
ListOfNotesSounding (after the NotesOff have been re-
moved) to have soft attack flags. When all the ListOf-
NotesSounding has been processed, test 1885 returns
a No and the procedure moves on to step 1900.
[0111] Step 1900 and 1905 set the NoteIndex and
NoteOnIndex values so that test 1910 can determine if
any NewNotesOn remain to be processed. If there are
any remaining new notes on, a Yes returns and loop 1910
through 1935 iterates through the ListOfNewNotesOn
assigning false values to the soft attack flags (1930) for
any new notes. This is because if a new note is being
sounded, any channel(s) subsequently assigned to play
such a note should play with a normal attack. When no
NewNotesOn remain to be processed, test 1910 returns
a No and the assignment of true or false "soft attack"
flags has been completed. At this point the ListOfNotes
is sorted 1940 according to pitch (highest numbered
notes by MIDI value have the highest pitch) and this sort-
ed list becomes the new ListOfNotes used by the subse-

29 30

EP 2 015 855 B1

17

5

10

15

20

25

30

35

40

45

50

55

quent processes for channel allocation. The soft attack
determination process ends at 1945.
[0112] Figure 11 is a block diagram illustrating another
embodiment of a note allocation processor according to
the invention. The note allocation processor 1102 of Fig-
ure 11 is somewhat different from note allocation proc-
essor 102 of Figure 1 and is more suitable for performing
the note allocation processes illustrated in Figures 4A-
10B. Most notably, note allocation processor 1102 of Fig-
ure 11 lacks note assignment tables; rather, the note al-
location processor 1102 performs channel allocation ac-
cording to the processes described with reference to Fig-
ures 4A-10B, using various counters and registers. To
illustrate, concurrent reference is made to the process of
Figures 4A-4B and to Figure 11. When the soft attack
feature is used, at step 400 the CPU 1104 assigns the
attack flags 1150. Then, at step 402 the CPU 1104 sets
the channel register 1130 to the total number of available
paths. This may depend on the input device, the player,
or user’s choice. At step 405 the CPU 1104 sets channels
left register 1145 to equal the value in channel register
1130. At step 410 the CPU 1104 lists the channels ac-
cording to priority in channel list register 1135. At step
415 CPU 1104 detects the total number of notes to be
played simultaneously and sets that number in notes reg-
ister 1105. Then the CPU 1104 sets current note register
1120 to value 1 at step 420, and lists the notes according
to pitch order in notes list register 1115 at step 425. At
this point all of the values in the various registers are
ready for the CPU 1104 to begin the process of Step 1,
i.e., the process beginning with step 430. In the process
of Figures 4A and 4B, it is shown that the current channel
register 1140 is initialized to 1 at step 470, i.e., after the
process starting at step 430 is completed. However, it
should be appreciated that this can be performed before
step 430.
[0113] It should be noted that when performing over-
flow processing, CPU 1104 also initializes the notes left
register 1125 to equal the value in the notes register
1105, as exemplified in Figure 5A, step 520. However,
this step can be performed anytime at a beginning of a
process when the CPU 1104 initializes the registers.
[0114] While the invention has been described with ref-
erence to particular embodiments thereof, it is not limited
to those embodiments. Specifically, various variations
and modifications may be implemented by those of ordi-
nary skill in the art without departing from the invention’s
scope, as defined by the appended claims.

Claims

1. A note assignment processor for assigning notes to
selected channels to be played by said channels,
comprising:

an input for receiving a notes-to-be-played sig-
nal; a central processing unit for detecting said

signal, determining the number of notes to be
played simultaneously, and
performing iterative process to assign each note
to a selected channel;
a note register for storing the total number of
notes to be played simultaneously;
a note list register for storing the notes to be
played simultaneously in a pitch order;
a current note register for storing the identity of
the current note processed by said central
processing unit;
a channel register for storing the total number
of channels available for note assignment;
a channel list register for storing the channels in
a specified order;
a channels left register for storing the number
of unassigned channels, and a note left register
storing the unassigned notes of the notes to be
played simultaneously,
wherein a predetermined priority value is preset
for each channel,
wherein said processor performs a first iterative
process over all priority values, whereby, for
each priority value, all channels having that pri-
ority value in common are assigned the same
note, and then, whenever the total number notes
exceeds the total number of priority values,
performs an overflow iterative process to assign
the remaining unassigned notes to channels ac-
cording to priority values,
said first and overflow iterative processes there-
by assiging at least two notes to one or more
channels having the same priority value.

2. The note assignment processor of claim 1, further
comprising an attack register.

3. The note assignment processor of claim 1, wherein
the total number of priorities remains constant for
the entire duration of a music piece played.

4. The note assignment processor of claim 1, wherein
the total number of notes does not exceed the total
number of channels.

5. The note assignment processor of claim 1, wherein
when the notes to be played signal comprises a note
off indication, said processor checks said note reg-
ister to determine whether any notes are to be played
and, if so, reassigns any channel playing said note
off to play one of the notes to be played.

6. The note assignment processor of claim 6, wherein
when said processor reassigns any channel playing
said note off to play one of the notes to be played,
said processor issues a soft attack instruction.

31 32

EP 2 015 855 B1

18

5

10

15

20

25

30

35

40

45

50

55

Patentansprüche

1. Notenzuordnungs-Prozessor zum Zuordnen von
Noten zu ausgewählten Kanälen, die von den Kanä-
len gespielt werden sollen, umfassend:

einen Eingang zum Empfangen eines Zu-Spie-
lende-Noten-Signals;
eine zentrale Prozessoreinheit zum Detektieren
des Signals, zum Bestimmen der Anzahl der No-
ten, die gleichzeitig gespielt werden sollen, und
zum Durchführen eines iterativen Prozesses,
um jede Note einem ausgewählten Kanal zuzu-
ordnen;
ein Notenregister zum Speichern der Gesamt-
zahl der Noten, die gleichzeitig gespielt werden
sollen;
ein Notenlisten-Register zum Speichern der No-
ten, die gleichzeitig gespielt werden sollen, in
einer Tonhöhenordnung;
ein Gegenwärtige-Noten-Register zum Spei-
chern der Identität der gegenwärtigen Note, die
von der zentralen Prozessoreinheit verarbeitet
wird;
ein Kanalregister zum Speichern der Gesamt-
zahl der Kanäle, die für die Notenzuordnung zur
Verfügung stehen;
ein Kanallisten-Register zum Speichern der Ka-
näle in einer spezifizierten Ordnung;
ein Übrige-Kanäle-Register zum Speichern der
Anzahl der nicht zugeordneten Kanäle; und
ein Übrige-Noten-Register, das die nicht zuge-
ordneten Noten der Noten speichert, die gleich-
zeitig gespielt werden sollen;
wobei ein vorgegebener Prioritätswert für jeden
Kanal vorhanden ist,
wobei der Prozessor einen ersten iterativen Pro-
zess über alle Prioritätswerte durchführt,
wodurch für jeden Prioritätswert alle Kanäle, die
denselben Prioritätswert gemeinsam haben,
der gleichen Note zugeordnet werden, und so-
dann, wann immer die Gesamtzahl Noten die
Gesamtzahl der Prioritätswerte übersteigt, ei-
nen iterativen Überlauf-Prozess durchführt, um
die restlichen nicht zugeordneten Noten den Ka-
nälen entsprechend den Prioritätswerten zuzu-
ordnen;
wobei der erste Prozess und die iterativen Über-
lauf-Prozesse dadurch wenigstens zwei Noten
zu einem oder mehreren Kanälen zuordnen, die
den gleichen Prioritätswert haben.

2. Notenzuordnungs-Prozessor nach Anspruch 1, fer-
ner umfassend ein Anschlag-Register.

3. Notenzuordnungs-Prozessor nach Anspruch 1, wo-
bei die Gesamtzahl der Prioritäten während der ge-
samten Dauer des gespielten Musikstücks konstant

bleibt.

4. Notenzuordnungs-Prozessor nach Anspruch 1, wo-
rin die Gesamtzahl der Noten die Gesamtzahl der
Kanäle nicht übersteigt.

5. Notenzuordnungs-Prozessor nach Anspruch 1, wo-
rin, wenn das Zu-Spielende-Noten-Signal ein Noten-
Aus-Merkmal umfasst, der Prozessor das Notenre-
gister überprüft, um festzustellen, ob irgendwelche
Noten gespielt werden sollen, und, wenn ja, jegli-
chen Kanal erneut zuordnet, der die Aus-Note spielt,
um eine der zu spielenden Noten zu spielen.

6. Notenzuordnungs-Prozessor nach Anspruch 6, wo-
rin der Prozessor jeglichen Kanal, der die Aus-Note
spielt, neue zuordnet, um eine der zu spielenden No-
ten zu spielen, wobei der Prozessor einen Weichan-
schlag-Befehl abgibt.

Revendications

1. Un processeur d’attribution de notes pour attribuer
des notes à des canaux sélectionnés pour être
jouées par lesdits canaux, comprenant :

une entrée pour recevoir un signal des notes à
jouer; une unité de traitement centralisée pour
détecter ledit signal, déterminer le nombre de
notes à jouer simultanément et pour exécuter
un processus itératif afin d’attribuer chaque note
à un canal sélectionné;
un registre de notes pour stocker le nombre total
de notes à jouer simultanément;
un registre de liste des notes pour stocker les
notes à jouer simultanément dans un ordre de
hauteur tonale;
un registre de notes courantes pour stocker
l’identité de la note courante traitée par ladite
unité de traitement centralisée;
un registre de canaux pour stocker le nombre
total de canaux disponibles pour l’attribution de
notes;
un registre de liste de canaux pour stocker les
canaux dans un ordre spécifié;
un registre de canaux restants pour stocker le
nombre de canaux non attribués, et un registre
de notes restantes pour stocker les notes non
attribuées parmi les notes à jouer simultané-
ment;
dans lequel une valeur de priorité prédétermi-
née est prédéfinie pour chaque canal;
dans lequel ledit processeur exécute un premier
processus itératif sur toutes les valeurs de prio-
rité où, pour chaque valeur de priorité, tous les
canaux ayant cette valeur de priorité en commun
se voient attribuer la même note et ensuite, cha-

33 34

EP 2 015 855 B1

19

5

10

15

20

25

30

35

40

45

50

55

que fois que le nombre total de notes excède le
nombre total de valeurs de priorité, un proces-
sus itératif débordant est exécuté afin d’attribuer
les notes non attribuées restantes à des canaux
selon les valeurs de priorité,
ledit premier et les processus itératifs débor-
dants de ce fait attribuent au moins deux notes
à un ou plusieurs canaux ayant la même valeur
de priorité.

2. Le processeur d’attribution de notes de la revendi-
cation 1, comprenant en outre un registre d’attaque.

3. Le processeur d’attribution de notes de la revendi-
cation 1, dans lequel le nombre total de priorités reste
stable pendant toute la durée de la pièce musicale
jouée.

4. Le processeur d’attribution de notes de la revendi-
cation 1, dans lequel le nombre total de notes n’ex-
cède pas le nombre total de canaux.

5. Le processeur d’attribution de notes selon la reven-
dication 1 dans lequel, quand le signal de notes à
jouer comprend une indication de note off, ledit pro-
cesseur vérifie ledit registre de notes afin de déter-
miner s’il y a des notes à jouer et, le cas échéant, il
réattribue n’importe quel canal qui joue ladite note
off à une des notes à jouer.

6. Le processeur d’attribution de notes de la revendi-
cation 6 dans lequel, quand ledit processeur réattri-
bue n’importe quel canal qui joue ladite note off à
une des notes à jouer, ledit processeur émet une
consigne d’attaque douce.

35 36

EP 2 015 855 B1

20

EP 2 015 855 B1

21

EP 2 015 855 B1

22

EP 2 015 855 B1

23

EP 2 015 855 B1

24

EP 2 015 855 B1

25

EP 2 015 855 B1

26

EP 2 015 855 B1

27

EP 2 015 855 B1

28

EP 2 015 855 B1

29

EP 2 015 855 B1

30

EP 2 015 855 B1

31

EP 2 015 855 B1

32

EP 2 015 855 B1

33

EP 2 015 855 B1

34

EP 2 015 855 B1

35

EP 2 015 855 B1

36

EP 2 015 855 B1

37

EP 2 015 855 B1

38

EP 2 015 855 B1

39

EP 2 015 855 B1

40

EP 2 015 855 B1

41

EP 2 015 855 B1

42

EP 2 015 855 B1

43

EP 2 015 855 B1

44

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 20050076770 A [0014]

	bibliography
	description
	claims
	drawings
	cited references

